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synopsis 
The concentration dependence of viscosities of dilute solutions of nonpolar polymers 

can be expressed generally as power series in concentration. Intrinsic viscosity is often 
estimated from zero concentration extrapolations of the Huggins and Kraemer equations, 
which are truncated versions of virial expressions in concentration. Neither form is 
strictly valid at most practical concentrations since real curvilinear relationships are 
forced into rectilinear forms. Prior methods of overcoming this deficiency by basing 
extrapolation methods for [q]  on more extended power series have attempted to provide 
graphically useful solutions. This requires reduction of the power series to a two-pa- 
rameter (slope and intercept) form and the assumption of certain relations between the 
various factors in the ,initial multiparameter expression. In  this work, power series 
expressions in concentration are solved directly by nonlinear regression analysis. It is 
shown that no two-parameter solution is generally valid, although each may be of value 
in a particular context. Three-parameter power series extensions of the basic Huggins 
and Kraemer equations represent dilute solution viscosities up to concentrations of 1% 
or 2% (w/v) very well. The computer-assisted nonlinear regression analysis is easily 
extended to higher powers of concentration, and the use of four-parameter forms is il- 
lustrated to represent viscosities of polystyrene solutions with concentrations as high as 
9%. 

INTRODUCTION 

Consideration of the behavior of colloidal suspensions suggests that the 
concentration dependence of the viscosities of dilute solutions of nonpolar 
polymers may be expressed generally as a concentration power series.' 
Equation (1) is an example in terms of the specific viscosity q S p :  

where q s p  = ( r ]  - r]o) /r]o,  with 70 and r]  being, respectively, the solvent vis- 
cosity and the viscosity of a solution of weight Concentration c. The limit- 
ing viscosity number (intrinsic viscosity) [r]] is defined as usual as the 
limiting extrapolated value of vSp/c at  zero c. 

Practically, [r]  I is conveniently evaluated from experimental 7, TO, and 
c data by use of graphic representations of the equations of Huggins2: 
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and Kraemer3: 

Equation (2) is cvidently a truncated version of eq. (1). Expansion of 
the logarithm in eq. (3) and neglect of higher terms in the resulting Taylor 
series leads to  the conclusion that plots of q,Jc and l / c  In q/vo should ex- 
trapolate to  the same intercept ( [ v ] )  at zero c. If the data points can in- 
deed be represented by eqs. (2) and (3), it is also readily shown that 

kl + kl' = 0.5 .  

The conventional measurement of [v]  involves a double extrapolation of 
eqs. (2) and (3), with the expectation that the intercepts will coincide 
closely enough to  warrant use of a mean value for [ q ]  and that the slopes of 
the relationships will conform to the sum indicated by eq. (4). This data 
treatment anticipates that the experimental values of vsp /c  and l / c  In v/qo 
will be accurately linear in c. The resulting estimations of [ v ]  and of the 
Huggins constant kl may be inaccurate to  the extent that truly curvilinear 
experimental rclations are forced into rectilinear forms for computational 
convenience. 

Solomon and ~o-workers~*~ and others have shown that [ q ]  can be d e  
duced from a single value of q/vo at given c, if the linearity implied in eqs. 
(2) and (3) is indeed applicable to the experimental points. It seems, 
however, that single-point equations for [ q ]  are reliable in practice only 
for low-concentration data in particular polymer-solvent combinations in 
which the Huggins' constant kl is not far from 0.33.6J This conclusion 
illustrates the widely perceived fact that neither the Huggins nor the 
Kraemer equations are strictly valid a t  most practical concentrations, 
since they are truncated versions of actual power series.8 

It might appear that the difficulties cited could be avoided by confining 
experimental concentrations to  very low values such that the higher terms 
in the respective power series are indeed negligible. This is, however, 
not a generally practical procedure. The experimental uncertainty in the 
v/vo ratio becomes unacceptably large, and the plot of qsp /c  against c 
usually exhibits an inflection at sufficiently low c.9,10 

A number of authors have recognized these reasons for the failure of 
experimental data always to conform to expectations. Extrapolation 
methods have been suggested based on power series relations such as those 
in eqs. (1) and (5 ) :  

(4) 

Heller" begins with these equations, for example. His object is, however, 
to  produce a graphically useful result, and this necessitates a final expres- 
sion, for ( c / vSp)  + [c/ln (q/qo) ] 1 in this case, which is linear in c. That 
is to say, the infinite series relations are eventually reduced in order to 
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provide a rectilinear relation with two graphically accessible parameters 
(slope and intercept). This representation may have some advantages 
over the conventional bilinear extrapolation of eqs. (2) and (3)." It is 
clear, however, that the use of truncated pseudolinear forms of what is 
probably essentially a curvilinear relation may result in differences in 
slopes and intercepts estimated from the same data by the different meth- 
ods, even though all the approximate relationships are mathematically 
valid in the limits of high dilution. This conclusion is illustrated by 
Bohdanecky. l2 

The same problem is inherent in all attempts to  improve the methods for 
estimating (7) by graphic extrapolation. Sakai's13 review of various ex- 
trapolation procedures indicates that equations with only one slope con- 
stant are unlikely to fit data from all polymer-solvent combinations. 

Maron and Reznik14 have recently considered the problem of estimating 
[q] and kl. Their recommendations were used in the present work as a 
departure point for comparisons of two-parameter and three-parameter 
estimation methods. These authors begin with the forms 

and 

In this article the graphic solution" of eqs. (la) and (5a) is compared to 
results obtained by nonlinear regression analysis for best-fit values of [q] 
and the other constants in the same equations. Computer-assisted regres- 
sion analysis provides a direct solution to these cquations. Graphically 
useful solutions, on the other hand, must assume certain relations be- 
tween the slope parameters to reduce the numbers of constants on the rhs of 
each equation to two. 

Equations (la) and (523) are infinite power series truncated after the c2 
terms, as written. Inclusion of more terms in the series would prevent 
simplification of these relations to graphically useful forms. Regression 
analyses with equations with more than the three parameters listed would 
likewise probably not be efficient. It is usually not convenient to measure 
solution viscosities a t  more than five or six concentrations, and a data an- 
alysis which minimizes residual squared deviations can be meaningful only 
if the number of fitted parameters is exceeded by the number of independ- 
ent data points. 

The work reported here proceeds from the generally accepted premise 
that eqs. (la) and (5a) are superior representations of dilute solution 
viscosity data. The results are novel in that this is the first instance to 
our knowledge in which these relations are solved directly without the use 
of assumptions to  reduce the equations to  two-parameter forms for graphic 
solution. 



3088 RUDIN, STRATHDEE, AND EDEY 

ESTIMATION OF PARAMETERS 

By cxpanding the logarithmic tcrm in eq. (5a) and comparing with eq. 
(la), Maron and Rcznil~'~ dcducc that the four slope constants in these two 
equations should bc rclatcd by cqs. (4) and (6) : 

g + l&' = k, - 1/3. (6) 
It can then bc shown that 

and the lhs of eq. (7) can be plotted against c to provide a rectilinear rela- 
tion from which [q] and kl can be estimated. Equation (7) depends on the 
validity of cqs. (4) and (6). The quadratic eqs. (la) and (5a) have been 
reduced to two-parameter forms to provide a graphically useful solution. 

Thc expcrimental data in this article were fitted to  eq. (7) by computer 
assistcd linear lcast-squares adjustment of the slope and intercept, in 
place of a direct graphic solution. We wish to compare the results of the 
linear least-squares fit to eq. (7) to  the nonlinear regression analysis fit of the 
data dircctly to eqs. (la) and (5a). Thc most convenient parameter for 
comparison of these procedures is provided by the multiple correlation 
~ocfficicnt~~ R2. R2 is defincd as follows: 

R2 = Z ( P ,  - F)'/Z(Yt - F)' (8) 

whcrc the summations are in i over all the data; F is the mean value of 
Y,; and Pi  is the value of Y i  estimated by the regression equation. Per- 
fect prediction would evidently result in Pi = Y ,  and R2 = 1. Thc 
multiple correlation coefficient is a normalized variate (0 I R2 I 1) and 
reflects the fraction of the variation in the dependent variable which is 
accounted for by the rcgrcssion equation. The regression equation is 
better the closer R2 is to unity (provided the number of independent data 
values cxceeds the number of adjustable parameters). 

Equations (la) and (54  were applied separately to the experimental 
data by adjusting [q J and the two k parameters in each relation to  maximize 
R2. APL programslB were written to perform these manipulations. 
Copies of the programs are available from the authors. The procedure 
reported seems to involve the most direct and rigorous application of eqs. 
(la) and (5a). It has not been possible to apply this method before the 
recent advent of concise computer-assisted data-fitting techniques. The 
prcvious workers mentioned here who used thc less exact two-parameter 
graphic solutions to the three-parameter equations were forced to such 
means for lack of more efficient tools. 

The results given here illustrate the application of the new, direct solu- 
tions of the three-parameter equations and also, incidentally, provide 
estimates of thc efficiencies of the various graphically useful approxima- 
tions in different polymer-solvent mixtures. 
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Dilute Solutions 

We first comparc thc direct nonlinear regression fit to eqs. (la) and 
(5a) with thc graphic solution through eq. (7). Table I summarizes results 
of the application of these three cquations to data measured with cyclo- 
hexanone solutions of poly(viny1 chloride) (PVC) . The three commercial 
PVC polymers studied in detail were Rucon B-29, Opalon 650, and Geon 
101EP. Molecular weight distributions of these polymers have been 
described elsewhere. 

The PVC specimcns used for solution viscosity measuremcnts were 
taken from samples which had becn used for a series of melt rhcology 
measurements. The same compound was examined after various thermal 
histories, as shown in the table. Thc different heat histories (details of 
which are not relevant to this articlc) account for the variations recorded in 
[ v ]  for different specimens of thc same material. Each PVC was initially 
stabilized with 4 wt-% of proprietary Ba-Cd-Zn liquid stabilizers. The 
same batch of distillcd cyclohexanone with a boiling range of 155-156°C 
was used in all measurements. Solution viscosities were measured at  
30°C at five concentrations, using Ubbelohde viscometers.18 The most 
conccntrated solutions contained about 0.1 g/dl polymer. 

Table I lists [TI, slope constants, and the multiple correlation coefficicnts 
R2. Although the latter parameters are given to  four decimal places, 
rounding-off results in R2 being given as unity in several cases. This in- 
dicates an apparent exact fit of the rcgrcssion equation to the experimental 
data. However, this perfect situation would doubtlessly not obtain if data 
from morc than five concentrations had bccn fitted to the same equations. 

The [ q ]  values in Tablc I which wcrc calculated from cqs. (la) and 
(5a) agree very well. These values were obtained, as noted, by statistical 
manipulations which minimized the differences between a rcgrcssion 
equation and the experimental data. Such best-fit relations may not 
necessarily be best for extap01ation.l~ As a general rule, the statistical 
exercise optimizes on the results in the experimental range and has no 
necessary relation to  values outside this range. The present results can, 
however, be extrapolated to  estimate the [ v ]  intercept with some confidence 
sincc both curvilincar regression equations have some foundation in theory, 
both give coincident intercepts, and both account for better than 99% 
(R2) of the data scatter at experimcntal concentrations. 

The values of [ v ]  from the linear least-squares fits to  Maron and Reznik’s 
eq. (7) do not agree quite as closely with the preceding two estimates. The 
former technique seems capable in this case, however, of providing a con- 
venient graphic estimate of [ v ]  which is reliable enough to  two decimal 
places for characterization of polymer M,. The built-in assumptions, 
eqs. (4) and (6), of this and all other two-parameter approximations to  
eqs. (la) and (5a) render such models less suitable for studies of polymer- 
solvcnt interactions than for measurcment of viscosity-average molecular 
weights. 
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Ideally, the sum of kl and kl' should be close to 0.5, eq. (4). The mean 
(p )  of the initial slopcs tabulated from eqs. (la) and (54 calculations is 
0.509, which is close to the expected value. The confidence limits of this 
mean are such, however, that 0.453 I p 5 0.565 (95%). 

The PVC-cyclohexanone data conform to eq. (4) within the limits 
given, but the relation expressed by ~q. (6) is not effectively satisfied. As 
a result, the kl values assessed by the method of Alaron and Reenik are not 
comparable to  those obtained by direct fitting of eq. (la) to the same 
experimental data. 

The multiple correlation coefficients R2 from regression analyses on eq. 
(7) are lower than the corresponding parameters obtained by applying 
eqs. (la) and (5a). This is probably because eq. (7) requires accurate 
measurement of the difference between q s p  and In q,. Both these quantities 
are small and their difference may approach the magnitude of the experi- 
mental error. 

The data in Table I1 compare results of nonlinear regressions on eqs. 
(la) and (5a) with applications of the Huggins, eq. (2), Kraemer, eq. (3), 
and Maron and Reenik, eq. (7), relations. Thc latter three equations 
were fitted to  the data with a linear least-squares program instead of the 
more convenient but more subjectivc graphic solution. The raw data 
were obtained in our laboratory with various pol ymcr-solvent combina- 
tions at 25°C. All dilute solution viscosities were measured at  six con- 
centrations. Except for the polystyrene-butanonc solution, [q ] values 
from the Huggins, Kraemer, and Maron and Reznik representations seem 
to be mutually consistent and slightly different from the intrinsic viscosi- 
ties obtained from cqs. (la) and (5a). The latter equations presumably 
provide the definitive values of [ q ]  because the relations used involve 
fewer assumptions. The three rectilinear relations of eqs. (2), (3), and 
(7) can all be accommodated in eqs. (la) and (5a) with appropriate values 
of the k parameters. A truly cur- 
vilinear situation cannot be handled by eqs. (2) or (3) and is accommodated 
by eq. (7) only with the proviso that eqs. (4) and (6) are valid. In addi- 
tion, eqs. (la) and (54  account better for all the experimental data (R2 is 
higher). 

As in Table I, the choice of data-handling method affects the slope con- 
stants more than the [ q ]  intercepts. Equation (6) is not supported by the 
experimental values of kl, h, and h' from data fitting t o  eqs. (la) and (54. 
The Huggins constant kl is assigned rather different values by data fitting 
to eqs. (2), (la), and (7). 

The reverse case is not true, however. 

Moderately Concentrated Solutions 

Weissberg, Simha, and Rothmanl9 have reported solution viscosities of 
polystyrene fractions over a very wide concentration range in several 
solvents. These data are used here to compare the intercept and slope 
estimates from the various techniques discussed above. 
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TABLE I1 
Dilute Solution Data (25OC) 

~ 

Opalon 
Polymer Dow Anionic Vistanex Vitanex 650 

Styron polystyrene I.-80 LM-MS poly(viny1 
683 (M = POlY- poly- chloride) 

polystyrene 61,000) isobutene isobutene tetra- 
Solvent dioxane 2-butanone toluene cyclohexane hydrofuran 

Huggins Equation, 
eq. (2): 

[TI, a / g  0.723 0.200 1.966 0,464 1.052 
ki 0.400 0.443 0.555 0.328 0.350 
RZ 0.9949 0.9985 0.9982 0.9605 0.9975 

Kraemer equation, 
eq. (3): 

[sl, a / g  0.725 0.200 2.030 0.463 1.049 
ki' 0.125 0.080 0.089 0.162 0.144 
Re 0.9704 0.9594 0.9988 0.8951 0.9910 

ki + ki' 0.525 0.523 0.644 0.490 0.494 
Equation (la): 

[sl, a / g  0.702 0.200 2.042 0.455 1.081 
ki 0.588 0.461 0.389 0.496 0.252 
ke -0.184 -0.071 0.086 -0.245 0.073 
Re 0.9994 0.9986 1.0 0.9664 0.9999 

[VI, dl/g 0.709 0.200 2.039 0.456 1.027 
ki' 0.009 0.045 0.102 0.059 0.214 

R2 0.9956 0.9651 1.0 0.9063 0.9999 

(eq. (5%)) 0.597 0.506 0.491 0.555 0.466 

h. (6)) 0.304 0.059 -0.021 0.239 0.047 

hl, dl/g 0.727 0.200 2.033 0.464 1.059 
ki 0.359 0.421 0.407 0.319 0.323 
Re 0.4583 0.9639 0.9986 0.0529 0.5504 

Equation (5s): 

kt' 0.135 0.140 -0.009 0.169 -0.055 

kl (eq. (la)) + kl' 
ki - /a - kz - kz' 

Equation (7): 

The results of Weissberg and co-workers extend to  much higher values 
of solution concentration than 1.0-1.5 g/dl which is the normal upper limit 
for estimates of [ q ]  and Huggins' constant. These authors estimated [ q ]  
and k1 by fitting least squares lines to  the data (as qsJc and c) over con- 
centrations in which the deviations from linearity appeared to  be random. 
That is to  say, the Huggins equation, eq. (2), was used, in the concentration 
range in which it seemed to  be applicable. 

The [ q ] ,  kl, and concentration limits for eq. (2) given by Weissbcrg et al. 
are recorded in the following tables. Also included are intercepts and slope 
constants estimated by the various relations considered earlier in this article. 
In the latter case we have used blocks of experimental results extending 
from a common lowest concentration to  progressively higher upper con- 
centration limits. This provides an evaluation of the applicability of the 
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TABLE IV 
Polystyrene (M = 146,000) in 90 Butanone/lO Isopropanol at 30°C~ 

Solution concentration: 
No. concentrations 
Lowest concen- 

tration, g/dl 
Highest concen- 

tration, g/dl 
Huggins equation, 

eq. (2): 
[ d ,  dl/g 
ki 
R2 

Kraemer Equation, 
eq. (3): 

[?I, dl/g 
kit 
R2 

kl (eq. (2)) + ki’ 
(eq. (3)) 

Equation (la): 
[vl, dl/g 
ki 
ka 
R2 

Equation (5a): 
[ A  w g  
ki’ 
kz’ 
R2 

ki (eq. (la)) + kl’ 

(eq. (5s)) 
Equation (7): 

Id, dl/g 
kt 
R2 

6 

0.0555 

0.4969 

0.322 
0.609 
0.9603 

0.323 

0.1571 

0.553 

0.323 
0.498 
0.630 
0.9622 

0.324 
0.045 

0.1876 

0.533 

0.305 
I .  170 
0.6072 

-0.055 

-0.562 

8 

1 .W13 

0.323 
0.567 
0.9904 

0.326 
0.002 
0.0004 

0.569 

0.323 
0.605 

0.9906 

0.323 
-0.154 

-0.115 

0.1271 

0.451 

0.252 
2.410 
0.2253 

- 

15 

3.1579 

0.321 
0.615 
0,9959 

0.327 
0.046 
0.7229 

0.661 

0.325 
0.505 
0.119 
0.9985 

0.326 
0.020 
0.028 
0.7418 

0.525 

0.285 
0.807 
0.3395 

27 

8.5624 

0.274 
1.282 
0.9726 

0.328 
0.048 
0,9740 

1.330 

0.331 
0.525 
0.350 
0.9997 

0.327 
0.045 
0.001 
0.9743 

0.570 

0.317 
0.535 
0.9843 

a Data are linear to 1 g/dl with [T ]  = 0.323 g/dl and kl = 0.572.lO 

various techniques for estimating [ q ]  and the slope constants as the ex- 
perimental solution viscosity functions deviate more and more from lin- 
earity in solution concentration. 

The extensive data of Weissberg and co-workersl@ include experimental 
results a t  two temperaurw for three polystyrene fractions (M = 58,000, 
146,000, and soO,000) in toluene, 2-butanone, and a W/10 mixture of 
butanone and isopropanol. 

As expected, the data which conform most closely to the expected lin- 
earity of the forms in eqs. (2) and (3) are those for the lowest molecular 
weight polymer (M = 58,000) in the best solvent (toluene). Table I11 
records the [ q ]  and kl values of Weissberg and co-workers and their esti- 
mates that vQP/c  was linear in c up to 1.4 g/dl a t  30°C and to  5 g/dl at 
48.2OC. Within these concentration limits, all five data representations 
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TABLE V 
Polystyrene (M = 600,000) in 90 Butanone/lO Isopropanol at 30°C and 48.2”C8 

3OoC 48.2OC 

Solution concentration : 
No. concentrations 
Lowest concen- 

tration, g/dl 
Highest concen- 

tration, g/dl 
Huggins equation, 

eq. (2): 
bJ1, dl/g 
ki 
R2 

Kraemer equation, 
eq. (3): 

[ d ,  dl/g 
ki’ 
R2 

kl (eq. (2)) + kl’ 
(eq. (3)) 

Equation (la): 
[vl, dl/g 
ki 
k2 

Re 
Equation (5a): 

[?I, dl/g 
ki’ 
k2’ 

R2 

kl (eq. (la)) + kl’ 
(eq. (58)) 

Equation (7): 
hl, dl/g 
ki 
R2 

6 

0.1081 

1.247 

0.778 
0.744 
0.9930 

0.809 
0.017 
0.9470 

0.762 

0.811 
0.493 
0.240 
1.0 

0.808 
0.013 
0.003 
0.9496 

0.506 

0.802 
0.531 
0.9960 

9 

0.1081 

1 .9952 

0.739 
0.961 
0.9906 

0.813 
0.027 
0.9254 

0.989 

0.807 
0.579 
0.247 
0.9999 

0.806 
-0.002 

0.018 
0.9888 

0.577 

0.800 
0.541 
0.9985 

6 

0.2247 

1.3753 

0.791 
0.717 
0.9671 

0.851 
0.065 
0.8440 

0.782 

0.911 
0.088 
0.493 
0.9963 

0.876 
0.164 

-0.073 
0.9379 

0.252 

0.808 
0.511 
0.5123 

8 

0.2247 

2.0308 

0.744 
0.943 
0.9804 

0.847 
0.056 
0.9048 

0.999 

0.862 
0.410 
0.321 
0.9971 

0.860 
0.099 

-0.024 
0.9387 

0.509 

0.799 
0.537 
0.7862 

* At 30°C data are not linear and [q]  estimated as 0.771 g/dl.lS At 48.2”C data are 
not linear and [q]  estimated as 0.874 g/dl.lg 

produce the same [ q ]  to within 0.002 g/dl. (The original concentration 
and viscosity data are given to four decimal places.) Equation (7) gives 
the lowest multiple correlation coefficient, but the [ q ]  values derived from 
this representation of the data are not seriously different from the figures 
given by the other techniques. This is because R2 by its definition is a 
measure of the usefulness of the terms other than the intercept in the model 
regression equati~n.‘~ R2 is a measure of the goodness of fit to the experi- 
mental points, as reflected in the slope constants in the power series equa- 
tion in concentration. This particular polymer-solvent combination is 
close to “ideal” in behavior, and so the linear Huggins and Kraemer equa- 
tions account for the observations as well as the curvilinear expressions, 
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TABLE 
Use of Extended 

______ 

Polystyrenemolecularweight 50,000 50,000 800,OOO 600.000 600,000 600,000 
Solvent toluene toluene 90 butanone butanone butanone toluene 

Temperature, "C 30 48.2 30 30 48.2 30 
No. concentrations 25 18 9 17 12 20 
Lowest concentration. g/dl 0.0778 0.1978 0.1081 0.0541 0.2493 0.0175 
Highest concentration. g/dl 5.9268 4.9732 1.9952 4.9516 5.2624 3.3969 

10 isopropanol 

Equation (lb): 
hl. dl/g 
kr 
kr 
kS 
R' 

Equation (5b): 
kl, dI/g 
b,' 
k,' 
k" 
R* 

[q]  from eqs. (la) and 

0.369 
0.307 
0.055 

-0.007 
0.9997 

0.369 
0.184 

-0.049 
0.009 
0.9989 

(58) 0.370 

0.326 
0.391 
0.039 

-0.010 
0.9995 

0.325 
0.105 
0.019 

-0.009 
0.9972 
0.325 

0.812 
0.434 
0.253 

-0.026 
1.0 

0.809 
0.021 

-0.016 
0.013 
0.9946 
0.810 

1.014 
0.534 
0.007 
0.027 
0.9999 

1.026 
0.062 
0.006 

-0.001 
0.9900 
1.020 

0.968 2.051 
0.584 0.359 
0.014 -0,001 
0.030 0.004 
1.0 0.9998 

0.997 2.050 
0.081 0.158 
0.003 -0.019 

-0.001 0.001 
0.9967 0.9984 
1.010 2.047 

and R2 is essentially the same for thc corresponding relations in eqs. (2)/ 
(la) and (3)/(5a). Somewhat surprisingly, however, this does not mean 
that the extra terms in eqs. (la) and (5a) have zero values for the rcspective 
coefficients ICz and ICz'. 

The data in Tablc IV are for 140,000 molecular weight polystyrcnc at  
30°C in the marginal solvent mixture of 90 butanone/lO isopropanol. 
Curvaturc of qsp /c  plots is more pronounced than in the case summarized 
in Table 111. Equation (7) is clearly inadequate in this instance and gives 
unreliable estimates of [ q ]  and kl. 

The raw data for (joo,000 molccular weight polystyrene in the mixed 
butanone-isopropanol solvent were not linear in terms of qsp /c  and c over 
any concentration range.l9 As would bc expected then, the [ q ]  extrapola- 
tions arc affected to  some extent by the estimation method. We see in 
Table V that the intercepts from thc Huggins and Kraemer equations 
do not match well and the sums of the limiting slopc parameters kl and kl' 
are not near the orthodox value of l/z. It is also not surprising that the 
extended series forms of cqs. (la) and (5a) seem to be more applicablc to  
these data. 

Use of Extended Power Series 

Extension of the power serics forms of cqs. (la) and (5a) t o  includc more 
terms would be expected to  represent cxperimental data over an even wider 
concentration range. Equations (lb) and (5b) are the corresponding four 
parameter forms: 

1 
-In 7, = [q ]  - k3'[q]% - k4'[ql3c2 - ks1[~ l4ca .  
C 

(5b) 
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VI 
Power Series 

600,000 146,000 146,000 146,000 146,000 146,000 146,000 
toluene 90 butanone 90 butanone 1)iitanone butanone toluene toluene 

48.2 30 48.2 30 48.2 30 48.2 
12 27 25 37 20 30 25 
0.1414 0.0555 0.2501 0.0969 0.2505 0.0433 0.1360 
3.7971 8.5624 8.3860 8.8312 7.0772 9.3280 9.1760 

10 isopropanol 10 isopropanol 

1.984 2.345 0.360 0,448 0.388 0.707 0.620 
0.332 -0.263 0.325 0.349 0.318 0.351 0.313 
0.006 0.023 0.086 0.079 0.157 0.003 0.016 
0.004 -0.006 0.021 0.010 -0.009 0.005 0,002 
1.0 0.3844 0.9996 1.0 0.9998 0.9999 0.9999 

1.975 0.503 0.355 0.447 0.386 0.707 0.610 
0.164 0.781 0.127 -0.131 0.134 0.158 0.161 

-0.021 -0,381 -0.031 -0.27 -0,048 -0.020 -0.021 
0.001 0.052 0.003 0.003 -0.009 0.001 0.001 
0.9998 G.9883 0.9910 0.9981 0.9941 0.9995 0,9943 
1.973 0.323 0.350 0.445 0.384 0.703 0.620 

The data of Wcissberg and ~o-worlrcrs'~ arc again particularly suitable to  
test thcse expressions since thc number of concentrations is always great 
cnough not t o  saturate the rcgrcssion equation. 

Tablc VI shows that the inclusion of morc cxtcnded forms of the power 
scrics covers thc available solution viscosity data up to  9% (w/v) in somc 
cases. Thc multiple regression cocfficicnt R2 is almost always >0.99, 
indicating that the power scrics forms, cq. (l), arc correct in principle. 
Thc [q] cxtrapolations do not coincide 2s well as thcy do when estirnatcd 
only from dilutc concentrations. The behavior of 146,000 molecular 
weight polystyrene data in butanonr/isopropanol is anomalous in Table 
VI, for rcasons which are not clear. 

DISCUSSION 
Ibrahim and EliasS havc shown that different values of [ q ]  can bc ob- 

tained from Huggins, eq. (2), and I h c m c r ,  eq. (3), plots cvrn whcn the 
former equation is obrycd exactly, if the Huggins constant is largc. This 
discrepancy stcms from iicglcct of higher terms in the Taylor srrics ex- 
pansion for In q7 in the Kracmcr relation. 

It was of intcrcst t o  consider how closely [ q ]  values from cqs. (la) and 
(5a) matched, since thcsc relations arc simply extensions of the Huggins 
and Kraemer equations. Thc data listed in Table I were used for this 
comparison. 

We havc assumed in this case that the differences between [ q ]  valucs 
calculated from cqs. (la) and (.;a) arc normally distributed. The 95% 
confidcncc limits for thc mean diffcrcnce (cZl) is such that -0.009 5 cZ1 5 
0.001. The [ q ]  values from thc two equations are not significantly dif- 
ferent (for thc PVC results in Table I), sincc zero difference is within the 
estimated interval. Applications of similar analyses to  the differences 
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between [ q ]  values from Maron and Reznik's eq. (7) and those from either 
eq. (la) or (5a) gives a larger variance of distribution of differences; 95% 
confidence limits are still such as to include zero difference. 

This report is based on the well-known assumption that the viscosity 
of dilute polymer solutions can be expressed accurately as a virial equation 
in concentration. For reasons mentioned, it is not generally practical or 
convenient for most purposes to extend this relation beyond the cubic power 
in concentration. Various attempts have been made to evaluate the inter- 
cept and slope constants in such expressions graphically. Two such pro- 
cedures mentioned in this article are those of Heller" and Maron and 
Reznik,'* but our conclusions appear to apply equally to all such methods. 

Any graphically useful technique must involve approximation of the 
three-parameter equation (in this case) with a two-parameter solution. 
Assumptions are therefore involved concerning the relations between 
some of the parameters in the initial power series form. These assump 
tions are often valid in certain cases, but experience does not seem t o  in- 
indicate a general applicability of any such particular solution. The 
double extrapolation of the Huggins and Kraemer equation forms is a 
special case of such graphically useful approximations to  solutions to a 
nonlinear equation. In this case, the parameters Icz and Icz' in eqs. (la) and 
(5a), respectively, are each assigned zero value. 

We have shown here that direct solution of eqs. (la) and (5a) by non- 
linear regression analysis of experimental data confirms the expectation 
that much of the difficulty with abbreviated forms of these relations can be 
removed. This straightforward solution to  the problem is practical only 
recently, since it relies on computer-assisted calculations. The various 
two-parameter approximations to  the solution of eqs. (la) and (5a) must 
necessarily be less widely applicable than the procedure used here. 

The graphic estimates may nevertheless be quite adequate for estimates 
of [ T ]  for most purposes. They seem to be less reliable for calculation of 
Huggins' constants or other slope parameters, since such constants reflect 
the approximation of a chord to  a real curve. 

The authors thank the National Research Council of Canada for financial support. 

References 

1. H. L. Frisch and R. Simha, RheoZogy, Vol. 1, F. R. Eirich, Ed., Academic Press, 

2. M. L. Huggins, J .  A m .  Chem. SOC., 64,2716 (1942). 
3. E. 0. Kraemer, Ind. Eng. Chem., 30,1200 (1938). 
4. 0. F. Solomon and I. Z. Ciuta, J .  Appl .  Polym. Sci., 6,683 (1963). 
5. 0. F. Solomon and B. S. Gotesman, Malrromol. Chem., 104,177 (1967). 
6. R. N. Shroff, J .  Appl .  Polym. Sci., 9,1547 (1965). 
7. T. D. Varma and M. Sengupta, J .  Appl .  Polym. Sci., 15,1599 (1971). 
8. F. Ibrahim and H. G. Elias, Makromol. Chem., 76,1(1964). 
9. D. J. Streeter and R. F. Boyer, J .  Polym. Sci., 17,154 (1955). 

New York. 

10. D. E. Ohm, J.  Polym. Sci., 17,137 (1955). 



DILUTE SOLUTIONS 3099 

11. W. Heller, J .  CoUoid Sci., 9,547 (1954). 
12. M. Bohdanecky, CoUed. Czech. Chem. Commun., 35,1972 (1970). 
13. T. Sakai, J.  Polym. Sci. A-$6,1659 (1968). 
14. S. H. Maron and R. B. Reanik, J .  Polym. Sci. A-2,7,309 (1969). 
15. N. R. Draper and H. Smith, Applied Regression Analysis, Wiley, New York, 1966. 
16. K. E. Ivenon, A Programming Language, Wiley, New York, 1962. 
17. A. Rudin and I. BenschopHendrychova, J .  Appl. Polym. Sci., 15.2881 (1971). 
18. L. Ubbelohde, J .  Znst.  Petrol., 19,376 (1933); ibid., 22,37 (1936). 
19. S. G. Wekberg, R. Simha, and S. Rothman, J .  Res. Nat. Bur. Stand., 47, 298 

(1951). 

Received February 1, 1973 


